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Abstract. A proposed standard set of test problems is described and applied to representative quadrilateral plate 
and solid brick finite elements. The problem set contains patch tests and beam, plate, and shell problems, some 
of which have become de facto standards for comparing the accuracy of finite elements. Although few in 
number, the tests are able to display most of the parameters which affect finite element accuracy. 

Introduction 

The intended purpose of the proposed problem set is to help users and developers of finite 
element programs to a~certain the accuracy of particular finite elemen1~ in various applications. 
It is not intended that the problems be used as benchmarks for cost comparisons since the 
problems are, in general, too small to be meaningful for this purpose. 

Nothing is as important to the success of a finite element analysis as the accuracy of the 
elements. Indeed, in a linear static analysis, the finite elements embody all of the discretizing 
assumptions: the rest of the calculations are exact except for their lack of precision. Thus the 
accuracy of the finite elements should be a matter of primary concern to those who perform 
finite element analyses and to those who are responsible for conclusions derived therefrom. 

Every new finite element is tested with one or more small problems and the results of these 
tests are generally published in the open literature or in FEM program documentation. Such 
test results are all that the user has to help him evaluate the elements prior to actual use. They 
have invariably proven to be woefully inadequate for this purpose: (a) because they test an 
insufficient number of conditions. (b) because few, if any, bad results are reported (not by 
design but because the developer fixed only the bugs he discovered), and (c) because they 
usually cannot be compared with results for other elements, particularly with those in other 
programs. These same defects would not be present in a carefully designed set of standard test 
problems applied to many different finite elements and widely circulated. 

The need for verifying finite element accuracy by independent testing and for compariag 
finite element results is becoming more widely recognized. A recent effort to evaluate the plate 
elements in commercial programs [1,2] revealed results ranging from excellent to extremely poor 
and misleading. Governmental concern for the accuracy of finite element analysis is evidenced 
by the Nuclear Regulatory Commission's requit, ement for structural analysis computer program 
validation, and abroad by the recent formation in the United Kingdom of a National Agency 
for Finite Element Methods and Standards (NAFEMS). While the former agency relies on 
verification problems supplied by the developer, the latter shows promise of doing their own 
testing. 

The authors can confirm from personal experience that the design of an adequate set of 
problems for finite element testing requires careful planning. Too often initial testing is done 
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with one or two relatively easy problems with known answers. For example, the only problem 
used in development testing of the NASTRAN ® plate bending elements TRPLT and QDPLT 
was the lateral loading of a rectangular plate [3]. The subsequent use of QDPLT and its 
membrane counterpart QDMEM in the solution of verification problems did not reveal any 
weaknesses in these elements because the verification problems were chosen to give excellent 
comparisons with theory rather than to act as critical element tests. We will show in this paper 
that these two elements (which when combined form the QUAD2 element) in fact have many 
weaknesses. This example is not an isolated one. Every element in MSC/NASTRAN has been 
revised in response to difficulties encountered in the field. In that process, we have gradually 
built up a library of element test problems which clearly demonstrate frequently encountered 
element failure modes. The problems to be described in this paper represent a substantial part 
of that library. 

The most important symptoms of accuracy failure in modern finite elements are spurious 
mechanisms, also known as rank deficiencies, and a phenomenon known as locking in which 
excessive stiffness is exhibited for particular loadings and /o r  irregular shapes. Most elements 
display one or the other of these symptoms, but not usually both. An important state-of-the-art 
problem is the design of elements which are free from spurious mechanisms and locking in all 
situations. Elementary ,defects of element design, such as violation of rigid body property and 
noninvariance to node r~umbering, are less frequently encountered nowadays, but are devastat- 
ing when they occur. 

The design of a comprehensive set of element test problems should, of course, take into 
account the parameters which affect accuracy. These parameters can be classified under the 
headings of loading, element geometry, problem geometry, and material properties. 

With regard to loading, the problem set should, as a whole, provide significant loading for 
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Fig. 1. Types of geometric distortion from a square plate. 
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each of the types of deformation which the elements can exhibit. For example, a three-noded 
shell element should be subjected to extension, in-plaae shear, and out-of-plane bending. For a 
four-noded shell element, add in-plane bending and twist. For an eight-noded element, add the 
motion of the edge nodes relative to the corners. The latter are less important, but should not be 
neglected entirely. 

Each element has a standard shape whichmay be the only shape that the developer has 
tested. In the case of a quadrilateral, the standard shape is a square; in the case of a 
hexahedron, the standard shape is a cube; and in the case of a triangle, the standard shape is 
usually an isoceles right triangle. Care should be taken to test nonstandard shapes. Fig. 1 shows 
the four basic modes of distortion of a square, each of which should be exhibited in the test 
problems and tested with several kinds of loading. 

Geometric parameters which are not isolated to single elements can also affect dement 
accuracy. Curvature is the most important such parameter. It is not sufficient to test only single 
curvature since some elements which behave well for single curvature behave poorly for doable 
curvature. The slenderness ratio and the manner of support of a structure affect the condition- 
ing of the stiffness matrix and therefore can be used to check element failures related to 
precision. 

Poisson's ratio has a strong effect on element accuracy as its value approaches 0.5. Such 
values should be included in the problem set if the use of nearly incompressible materials is 
contemplated. Plasticity affects element accuracy in much the same way as incompressible 
material. Plasticity and all other nonlinear effects are outside the scope of the paper. Aniso- 
tropic material properties also have a significant effect on element accuracy which will not be 
examined here. 

The test problems 

The names of the proposed test problems are listed in Table 1, which also indicates the 
suitability of each problem for testing various types of elements. The geometry, material 
properties, boundary conditions, loading, and element meshing for each problem are described 
in Figs. 2 through 10 in sufficient detail to permit construction of a finite element model 
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Fig. 2. Patch test for plates, a = 0.12; b = 0.24; t -- 0.001; E = 1.0× 106; p = 0.25. Boundary  conditions: see Table 2. 

Locat ion of  inner nodes:  

x Y 

1 0.04 0.02 
2 0.18 0.03 
3 0.16 0.08 
4 0.08 0.08 
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Table 1 
Summary of proposed test problems 

Test problem Suitability of  problem for element type 

Beam Membrane Bending Shell a 
plate plate 

Solid 

Putch tests × x x 
Straight cantilever beam × × x x 
Curved beam x x x x 
Twisted beam x × × 
Rectangular plate x × 
Scordel.;s-Lo roof × × 
Spherical shell × x 
Thick-walled cylinder × b X 

a A shell element is defined here as an element that combines membrane and bending properties. 
b Using plane strain option. 

T 
Y 

X 

/ 
Fig. 3. Patch test for so!ids. Outer dimensions: unit cube; E = 1.0 x 106; p = 0.25. Boundary conditions: see Table 2. 
Location of inner nodes: 

x y z 

1 0.249 0.342 0.192 
2 0.826 0.288 0,288 
3 0.850 0.649 0,263 
4 0.273 0,750 0,230 
5 0.320 0.186 0,643 
6 0.677 0.305 0.683 
7 0.788 0.693 0.644 
8 0.165 0.745 0.702 
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Fig. 4. Straight cantilever beam. (a) Regular shape elements; (b) Trapezoidal shape elements; (c) Parallelogram shape 
elements. Length -- 6.0; ~.,idth -~ 0.2; depth -- 0.1; E -- 1.0× 107; p -- 0.30: mesh -- 6 x 1. Loading: unit forces at free 
end. ( Note: All elements have equal volume.) 

cons is t ing  o f  b e a m ,  quadr i l a t e r a l  plate ,  shell,  o r  br ick e lements .  A n  a p p r o p r i a t e  mesh ing  for  
t r iangles  a n d  wedge  e l emen t s  can  be  o b t a i n e d  by  subdiv id ing  the  q u a d s  a n d  bricks.  Theore t ica l  

resul ts  for  the  p r o b l e m s  are  given in Tab le s  2 th rough  5. 

0 

FIXED 

Fig. 5. Curved beam. Inner radius-- 4.12: 
outer radius = 4.32: arc -~ 90°: thickness 
=0.] ;  E=I .0x l07 ;  p = 0 . 2 5 : m e s h = 6  
× 1. Loading: unit forces at tip. 
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FIXED 

END 

Fig. 6. Twis ted  beam.  Length = 12.0; width - -  1.1; depth  = 0.32; twist = 90 ° (root to tip); E = 29.0 × 106; ~, -- 0.22: 
mesh - 1 2  x 2. Loading:  unit forces at tip. 

No comprehensive set of finite element test problems would be complete if it did not include 
patch tests for plate and solid problems. The patch test that we propose for plates, shown in 
Fig. 2, has been used by Robinson [1,2] to test commercial finite elements. Note that the 
arbitrarily distorted element shapes are an essential part of the test. On the other hand, the 
rectangular exterior shape of the plate makes it easy to provide boundary conditions corre- 
sponding to constant membrane strains or constant bending curvatures, independent of element 
shape. We have elected to use displacement boundary conditions (see Table 2) because they are 
easier to specify for a variety of elements than the force and raoment boundary conditions 
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Fig. 7. Rectangular  plate, a -- 2.0; b -- 2.0 or  10.0; thickness = 0.0001 (plates); thickness = 0.01 (solids); E = 1.7472 x 10T; 
= 0.3; boundar ies  = simply suppor ted  or  clamped;  m e s h -  N x N (on 1/4 of  plate). Loading:  uniform pressure, 

q = 10 -4 ,  or  central  load P = 4 . 0 x  10 -4 .  

YX 
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/ 
Fig. 8. Scorde l i s -Lo  roof, Radius  = 25.0; 
length --- 50.0; thickness --- 0.25; E .-, 4.32 
x 10s; p = 0.0; load ing- -  90.0 per  unit  
area in - Z direction; ux ~- u= - 0 on 
curved edges; mesh:  N x N on shaded 
area. 
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Y 

= 2.0 
quadrant) 

Fig. 9. Spherical shell problem. Radius -- 10.0; thickness = 0.04; E = 6.825 x 107; p = 0.3: mesh --- N × N (on quadrant). 
Loading: concentrated forces as shown. 

employed by Robinson. If the latter are used, the load distribution rules s~own in Fig. 11 are 
appropriate for isoparametric elements. 

The principal virtue of a patch test is that, if an element produces correx:t results for the test, 
the results for any problem solved with the element will converge toward the correct solution as 

Radius 
o 

$ ~  

Fig. 10. Thick-walled cylinder. Inner radius = 3.0; outer radius = 9.0: thickness = 1.0; E -- 1000; ~, -- 0.49, 0.499. 0.4999: 
plane strain condition; mesh: 5 × 1 (as shown above). Loading: unit pressure at inner radius. 
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Table 2 
Boundary conditions ~nd theoretical solutions for patch tests 

(a) Membrane plate patch test 
Boundary conditions: u = 1 0 - 3 ( x  + y/2) 

v = 10-3(y + x / 2 )  

Theoretical solution: 
C x = C y = ¥ = 1 0 - 3 ;  ox =Oy=1333. ; %~y = 400 

(b) Bending plate patch test 
Boundary conditions: w = 10-3(x 2 + xy + y2) /2  

0 x = att'/~y = 10-3(y + x / 2 )  
o,, = -aw/ax = 1 0 - 3 ( -  x - y / 2 )  

Theoretical solution: 
Bending moments per unit length: 

m x = m y  =1.111 )<10-7; mxy =10 -7 
Surface stresses: 

o~ = oy = +0.667; ~'xy = +0.200 

(c) Solid patch test 
Boundary conditions: u = 10-3(2x + y + z ) / 2  

v = 10-3(x + 2 y  + z ) / 2  
w =10-3(x  + y + 2z ) /2  

Theoretical solution: 
¢ x = ¢y = ~: = Yxy = Yyz = Vzx =10-3 
o x = Oy =.o: = 2000; ~-,,y = ~-y: = ~':x = 400 

Table 3 
Theoretical solutions for beam problems 

Tip load direction Displacement in direction of load 

Straight beam Curved beam Twisted beam 

Extension 3.0 × 10- s 
In-plane shear 0.1081 
Out-of-plane shear 0.4321 
Twist 0.03208 

0.08734 
0.5022 

0.005424 
0.001754 

Table 4 
Theoretical solutions for rectangular plate a 

Boundary supports Aspect 
ratio 
b / a  

Displacement at center of plate b 

Uniform pressure Concentrated force 

Simple 1.0 4.062 11.60 
Simple 5.0 12.97 16.96 
Clamped 1.0 1.26 5.60 
Clamped 5.0 2.56 7.23 

See [8] for the method. 
b Values shown are for shell elements; multiply by 10 -6 for solid elements because the thickness used for solid 

elements is 100 times greater. Erratic results were obtained with the solid elements at the lesser thickness. 
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Table 5 
Theoretical solutions for shell and cylinder problems 

(a) Scordelis- Lo roof 
The value for the midside vertical displacement quoted in [5] is 0.3086. Many finite elements converse to a slightly 
smaller value. We have used the value 0.3024 for normalization of our results. 

(b) Spherical shell 
Reference [7] computes a theoretical lower bound of 0.0924 for the displacement under load in the case where the hole 
at the center is not present. We have used the value of 0.0940 for normalization of our results. 

(c) Thick. walled cylinder 
Formula for radial displacement: 

0 + [R /r 
u = R2  _ R!  ) 

where p = pressure; R I -- inner radius; R 2 = outer radius. 

poisson's ratio Radial displacer, lent at r = R t 

0.49 5.0399 × 10- 3 
0.499 5.0602 x 10 - 3 
0.4999 5.0623 x 10- 3 

the elements are subdivided. The reason, of course, is that the stress within each element tends 
to a uniform value in the limit. Many authorities, including Irons [4], feel that an element that 
does not pass the patch test should not be trusted. On the other hand, passing the patch test 
does not guarantee satisfaction since the rate of convergence may be too slow for practical use. 

The proposed patch test for solid elements (see Fig. 3) is seen to be an extension of 
Robinson's patch test to three dimensions. Displacement boundary conditions for the test are 

also given in Table 2. 
The straight cantilever beam (see Fig. 4) is a frequently used test problem which can be 

applied to beam, plate, and solid elements, t Its virtues are its simplicity and the fact that all of 
the principal element deformation modes described earlier (constant and linearly varying strains 
and curvatures) can be evoked by loads applied to the free end. We have ~aded irregular 
element shapes principally to test the combination of such shapes with linearly varying strains. 

In the curved cantilever beam (see Fig. 5), combinations of the principal deformation modes 
are evoked by a single in-plane or out-of-plane shear load at the tip. Note also that the element 
shape is not quite rectangular, which will test the effect of slight irregularity. Theoretical tip 
displacement results for all of the beam problems are shown in Table 3. 

The twisted beam element is the only one in our proposed set that tests the effect of warp on 
plate elements. The warp of each element is only 7.5 ° , but even this small amount will produce 

a surprising result. 
As noted earlier, the laterally loaded rectangular plate (see Fig. 7) is a survivor from the 

original testing of NASTRAN ® plate elements. It has become a de facto standard test and has 
been seen frequently in the technical literature. Theoretical results for lateral displacement at 
the center are provided in Table 4 for all of  the combinations of boundary supports, aspect 
ratio, and loading conditions listed in Fig. 7. This is the first problem in which convergence with 

decreasing mesh spacing will he studied. 

m Note that the proper way to apply free end load depends on element type (see Fig. 11). 



12 R.H. MacNeal, R.L Harder / Pr~posed standard set of problems to test FE accuracy 

The Scordelis-Lo roof [5] (see Fig. 8) also has achieved the status of a de facto standard test 
problem and has found its way into textbooks [6]. The test result most frequently displayed is 
the vertical displacement at the midpoint of the free edge. The theoretical value for this result is 
0.3086, but most elements converge to a slightly lower value. Membrane and bending deforma- 
tions both contribute significantly to it. The Scordelis-Lo roof is the only singly-curved shell 
problem in the proposed standard problem set. 

The spherical shell shown in Fig. 9 is our proposed doubly-curved shell problem. Note that 
the equator is a free edge so that the problem represents a hemisphere with four point loads 
alternating in sign at 90 ° intervals on the equator. The hole at the top has been introduced to 
avoid the use of triangles ne:~r the axis of revolution. Convergence can be studied by varying 
mesh size. Both membrane and bending strains contribute significantly to the radial displace- 
ment at the load point. A theoretical value of the displacement under load has been computed 
for a slightly different configuration [7] in which the hole at the axis is close(;. 
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QUAD8 QUAD2 or QUAD4 
C 0 0 0 0 
1 1 I 1 

b 
Fig. 11. Consistent load distribution on beam end. (a) Tension or shear load. (b) Moment load. 
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Table 6 
Summary of element properties 

13 

Name Shape Connections Description 

Number of points Components a 

Reference 

QUAD2 . ~  4 7", R 

OUAP4 4 r, R 

QUADS ~ 8 7", R 

HEXA(8)) ~ ~  8 T 

HEX20 , ~  20 T 

HEX20(R) ~ 20 T 

Composed of two pairs of overlapping 
triangles. Each triangle has constant 
membrane strain and lateral deflection 
described by an incomplete (nine-term) 
cubic polynomial 

Isoparametric with selective reduced order 
integration. Transverse shear uses 
string-net approximation and augmented 
shear flexibility 

lsoparametric with selective reduced order 
integration 

lsoparametric with selective reduced order 
integration and internal strain functions 
equivalent to bubble functions 

[9l 

ll0.111 

D21 

~?tandard isoparametric [15] 

Standard isoparametric with reduced order 
integration. 

D3d41 

1161 

a Note: T = all three components of translation; R -- all three components of rotation. 

The section of a thick-walled cylinder shown in Fig. 10 has been chosen to test the effect of 
nearly incompressible material. Note that a plane strain condition is assumed which, along with 
the radial symmetry, confines the material in all but the radial direction and intensifies the 
numerical d~fficulty caused by near incompressibility. 

The elements 

The ability of the proposed test problems to discriminate good and poor element accuracy 
will be examined by testing a selection of NASTRAN ® and MSC/NASTRAN elements. The 
selection includes three quadrilateral shell elements (QUAD2, QUALM, and QUADS) and three 
solid brick elements (HEXA(8), HEX20, and HEX20(R)). The properties of each of the six 
elements 2 are summarized in Table 6. 

The QUAD!2 element is the original NASTRAN ® quadrilateral plate element. It was 
conceived in 1967 and it is still heavily used in NASTRAN ®. It has been replaced in 
MSC/NASTRAN by the QUAD4, which is probably the most frequently used 
MSC/NASTRAN element, and by the eight noded QUAD8. 

2 One of the authoi!s of Ithis paper, R.H. MacNeal, is also the author of four of the elements (QUAD2, QUAD4, 
QUADS, and HF~I~,A(8)) and therefore need not apologize to anyone, except perhaps to the users of these elements. 
for any unkind wol~'ds that m;,.y be said here about them. 
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The MSC/NASTRAN brick element, HEXA, has both an eight-noded and a twenty-noded 
form. Only the more frequently used eight-noded form, HEXA(8), will be tested. The other two 
brick elements to be tested are the infrequently used MSC/NASTRAN HEX20 and HEX20(R), 
which are included here because "~hey are respectively identical to the well known and widely 
used standard isoparametric brick element with full and reduced order integration. 

The QUAD4, QUADS, and HEXA(8) elements are modified occasionally, and some of the 
modifications may affect accuracy. The results to be presented were oh:ained with Version 63 of 
MSC/NASTRAN and may not agree in all details with results from earlier or later versions. 

Test results 

The test results are detailed in Tables 7 through 15 and summarized in Tables 16 and 17. The 
test data have been restricted to one data point per case in order to save space. The quantity 
recorded in the patch test results (Table 7) is the maximum stress error. In cases with point 
loads, the recorded quantity is the displacement under load, which is a direct measure of the 
total strain energy, in cases with distributed loads, the largest displacement component has been 
recorded. 

Most of the data in Tables 7 through 15 are presented in normalized form, i.e., the recorded 
value is the ratio of the value obtained in an MSC/NASTRAN finite element analysis to the 
theoretical value. The one exception occurs in the patch test where the percent error is recorded. 

In Tables 16 and 17, the test data are reduced to a letter grade by the following rules: 

Graae Rule 

A 27o >i error 
B 107o >I error > 2% 
C 20¢g >1 error > 107O 
D 50~ >I error > 207O 
F error > 507o 

In situations where more than one case contributes to a letter grade, the absolute errors have 
been averaged before assigning a letter grade. 

Tables 16 and 17 reveal a great deal about the elements and about the tests. It should be 
noted, first of all, that the proposed test problems are deceptively difficult and that a failing 
grade in one or more problems should not disqualify the element for applications where the 
combination of parameters that caused the failure do not occur. Note, for example, that both 
the QUAD2 and the QUAD8 fail the patch test for out-of-plane loading. The QUAD2 then 
proceeds to fail four of the eight other tests that involve out-of-plane loading while the QUADS 
fails none. The test scores of all the elements could, of course, be improved by mesh refinement, 
particularly in the beam problems where the mesh is only a single element deep in the slender 
directions. On the other hand, most users expect to get accurate results with coarse meshes, and 
the authors have constructed the test problems in this spirit. 

Table 7 
Patch test results 

Constan!ostress loading 

Constant-curvature loading 

Maximum error in stress 

QUAD2 QUAD4 QUAD8 HEXA(8) HEX20 HEX20(R) 

0.0 0.0 18.0~ 0.0 0.0 0.0 

30,7~ 0.0 51.6~ N / A  N / A  N / A  
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The most d is turb ing  failure of  the Q U A D 2  element is its inabi l i ty  to get a passing grade for 
in-plane bending  of  the straight beam with regular element shape. This  failure is echoed in the 
curved beam and the Scordel i s -Lo roof problems and was responsible  for the development  of 
the Q D M E M I  and  Q D M E M 2  m e m b r a n e  elements  in N A S T R A N  ~, neither of which proved to 
be a significant improvement .  The spectacular  failure of the Q U A D 2  in the twisted beam 
problem is due to the misa l ignment  of  the moments  at the boundar ies  between adjacent  
e lements  when the elements  are skewed. The misa l ignment  produces a resultant momen t  about  
the normal  to the surface which is not resisted. In spite of  these weaknesses, the Q U A D 2  
received an excellent grade on the spherical  shell problem in contrast  to the higher  order 
e lements  which received C's  or worse. 

The only failures of the Q U A D 4  element  are locking for the straight beam with in-plane 

Table 8 
Results for straight cantilever beam 

Tip loading direction Normalized tip displacement in direction of load 

QUAD2 QUAD4 Q U A ' D 8  H E X A ( 8 )  HEX20 HEX20( R )" 

(a) Rectangular elements 
Extension 0.992 0.995 0.999 0.988 0.994 0.999 
In-plane shear 0.032 0.904 0.987 0.981 0.970 0.984 
Out-of-plane shear 0.971 0.986 0.991 0.981 0.961 0.972 
Twist 0.566 0.941 0.950 0.910 0,904 0,911 

(b) Trapezoidal elements 
Extension 0.992 0.996 0.999 0.989 0.994 0.999 
In-plane shear 0.016 0.071 0.946 0.069 0.886 0.964 
Out-of-plane shear 0.963 0.968 0.998 0.051 0.920 0.964 
Twist 0.616 0.951 0.943 0.906 0.904 0.918 

(c) Parallelogram elements 
Extension 0.992 0.996 0.999 0.989 0.994 0.999 
In-plane shear 0.014 0.080 0.995 0.080 0.967 0.994 
Out-of-plane shear 0.961 0.977 0.985 0.055 0.941 0.961 
Twist 0.615 0.945 0.965 0.910 0.904 0.913 

a The good to excellent results shown here for HEX20(R) were obtained in spite of singularity in the beam's stiffness 
matrix. 

Table 9 
Results for curved beam 

Tip loading Normalized tip displacement in direction of load 

direction QUAD2 QUAD4 QUAD8 H E X A ( 8 )  H E X 2 0  HEX20( R ) 

In-plane (vertical) 0.025 0.833 1.007 0.880 0.875 1.006 

Out-of-plane 0.594 0.951 "0.971 0.849 0.946 0.959 

Table 10 
Results for twisted beam 

Tip loading Normalized tip displacement in direction of load 

direction QUAD2 QUADa QUAD8 HEXA(8) HEX20 H EX20( R ) 

In-plane 100.4 0.993 0.998 0.983 0.991 0.993 

Out-of-plane 228.9 0.985 0.998 0.977 0.995 0.999 
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Table I1 
Results for rectang~L~-~.= pla~e simple supports: uniform load 

(a) Aspect ratio = 1.0 

Number of node spaces a Normalized lateral deflection at center 
per edge of model QUAD2 QUAD4 QUAD8 HEXA(8) HEX20 HEX20( R ) 

2 
4 
6 
8 

(b) Aspect ratio = 5.0 

Number of node spaces a 
per edge of model 

0.971 0.981 0.927 0.989 0.023 1.073 
0.995 1.004 0.996 0.998 0.738 0.993 
0.998 1.003 0.999 0.999 0.967 1.011 
0.999 1.002 1.000 1.000 0.991 1.008 

Normalized lateral deflection at center 

QUAD2 QUAD4 QUAD8 HEXA(8) HEX20 HEX20(R) 

2 0.773 1.052 1.223 0.955 0.028 1.139 
4 0.968 0.991 1.003 0.978 0.693 0.995 
6 0.993 0.997 1.000 0.990 1.066 1.024 
8 0.998 0.998 1.000 0.995 1.026 1.006 

a For elements with midside nodes, the number of elements per edge of model is equal to one-half the number of node 
spaces. 

Table 12 
Results of rectangular plate clamped supports: concentrated load 

(a) Aspect ratio = 1.0 

Number of node spaces 
per edge of model 

Normalized lateral deflection at center 

QUAD2 QUAD4 QUAD8 HEXA(8) HEX20 HEX20( R ) 

2 0.979 0.934 1.076 0.885 0.002 0.983 
4 1.008 1.010 0.969 0.972 0.072 0.433 
6 1.006 1.012 0.992 0.988 0.552 0.813 
8 1.005 1.010 0.997 0.994 0.821 0.942 

(b) Aspect ratio -- 5.0 

Number of node spaces Normalized lateral deflection at center 
per edge of model 

QUAD2 QUAD4 QUAD8 HEXA(8) HEX20 HEX20(R ) 

2 0.333 0.519 0.542 0.321 0.001 0.363 
4 0.512 0,~63 0.754 0.850 0.041 0.447 
6 0.638 t£~,~ 0.932 0.927 0.220 0.721 
8 0.723 0.972 0.975 0.957 0.374 0.867 

Table 13 
Results for Scordelis-Lo roof 

Number of node spaces 
per edge of model 

Normalized vertical deflection 
at midpoint of free edge 

QUAD2 QUAD4 QUADS HEXA(8) HEX20 HEX20(R ) 
. .  

2 0.784 1.376 1.021 1.320 0.092 1.046 
4 0.665 1.050 0.984 1.028 0.258 0.967 
6 0.781 1.018 1.002 1.012 0.589 1.003 
8 0.854 1.008 0.997 1.005 0.812 0.999 

10 0.897 1.004 0.996 - - __ 
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bending and irregular elements and locking for the thick-walled cylinder with nearly incom- 
pressible material. These are state-of-the-art problems for four-noded elements. The only other 
test where QUAD4 shows weakness is the curved beam with in-plane loading which is a 
manifestation of the first mentioned locking problem. 

The QUAD8 receives passing grades on all but the out-of-plane patch test, which is 
surprising in view of the importance usually attached to the patch test. On the other hand, the C 

Table 14 
Results for spherical shell 

Number of node spaces Normalized radial deflection at load point 
per edge of model QUAD2 QUAD4 QUAD8 HEXA(8) HEX20 HE×20( R ) 

2 0.928 0.972 0.025 - - - 
4 0.990 1.024 0,121 0.039 0.001 00162 
6 0.990 1.013 0.494 - - - 
8 0.986 1.005 0.823 0.730 0.021 0.776 

10 0.984 1.001 0.955 - - - 
12 0.982 0.998 0.992 0.955 0,097 0.972 

Table 15 
Results for thick-wailed cylinder 

Poisson's ratio Normalized radial displacement at inner boundary 

QUAD2 QUAD4 QUAD8 HEXA(8) HEX20 HEX20( R ) 

0.49 ~.6-¢3 0.846 !.000 0.986 0.999 1.000 
0.499 0.156 0.359 0.997 0.980 0.986 1.000 
0.4999 0,'318 0.053 0.967 0.986 0.879 1.000 

Table 16 
Summary of test results for shell elements 

Test Element loading Element QUAD2 QUAD4 

In-plane Out-of-plane shape a 

(1) Patch test × Irregular A A C 
(2) Patch test × Irregular D A D 
(3) Straight beam, extension × All A A A 
(4) Straight beam, bending x Regular F B A 
(5) Straight beam, bending × Irregular F F B 
(6) Straight beam, bending × Regular B A A 
(7) Straight beam, bending x Irregular B B A 
(8) Straight beam, twist All D R B 
(9) Curved beam x R_,~ular F C A 

(10) Curved beam x Regular D B B 
(11) Twisted beam x x Regular F A A 
(12) Rectangular plate (N  = 4) × Regular C B B 
(13) Scordelis-Lo roof (N  -- 4) × x Regular D B A 
(14) Spherical shell (N = 8) x x Regular A A C 
(15) Thick-walled cylinder ( r  -- 0.4999) x Regular F F B 

Number of failed tests (D's and F's) 9 2 1 

QUAD8 

a Regular means that element shape has not been intentionally distorted. 
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noted for the spherical shell is disturbing in view of the practical importance of this problem. 
The HEXA(8) element passes the patch test and performs well when the elements are regular 

but behaves poorly for bending loads on irregular elements. This is probably why it also 
converges slowly in the spherical shell problem and gets C's in the curved beam test where the 
elements deviate slightly from rectangular shape. It is noteworthy that the HEXA(8) gets an 
excellent mark for the nearly incompressible thick-walled cylinder as the result of a design 
feature recently built into the element. 

The standard isoparametric HEX20 does fairly well on all the beam problems but fails the 
important plate and shell problems. These failures are somewhat alleviated by the introduction 
of reduced order integration as evidenced in the results for HEX20(R). On the other hand, 
reduced order integration is responsible for the singularity of the stiffness matrix noted in the 
straight beam tests. The spuri'ous modes associated with this singularity involve a second order 
distortion of the cross-section which has no component in the direction of the applied load. The 
rather erratic results for HEX20(R) shown in Table 12(a) are probably related to the reduced 
order of integration. Thus, while reduced order integration appears to improve performance for 
many applications, it can lead to sudden unexpected failure in others. 

Turning our attention away from the elements to the test problems, it is seen that the 
problems are capable of evoking both good and bad results. In only one problem, extension of a 
straight beam, did all of the elements get A's. (This is a throwaway test in the sense that any 
element that cannot pass it should be thrown away.) All but three of the remaining fourteen 
tests produced failing grades for one or more elements and all but three of the remaining tests 
produced a grade of A for one or more elements. 

Two important questions are whether any of the tests are duplicates of other tests and 
whether the tests are sufficient. The first question can be answered by noting that the letter 
grade test results are not duplicated across the six elements by any pair of tests. The second 
question is more difficult to answer because the list of error causing parameters is not closed. 
We can, however, examine whether the parameters described in the introduction as those which 
affect accuracy are present in one or more problems. The result of the examination is 

Table 17 
Summary of test results for solid elements 

Test Element HEXA(8) HEX20 HEX20(R) 
shape 

(1,2) Patch test 
(3) Straight beam, extension 
(4,6) Straight beam, bending 
(5) Straight beam, bending 
(7) Straight beam, bending 
(8) Straight beam, twist 
(9) Curved beam, in-plane loading 

(10) Curved beam, out-of-plane loading 
(11) Twisted beam 
02) Rectangular plate (N -- 4) 
(13) Scordelis-Lo roof(N = 4) 
(14) Spherical shell (N = 8) 
(15) Thick-walled cylinder (v = 0.4999) 

Number of failed tests (D's and F's) 

Irregular A A A 
All A A A c 
Regular A B B c 
Irregular a F B A c 
Irregular b F B B c 
All B B B c 
Regular C C A 
Regular C B B 
Regular B B A 
Regular B F D 
Regular B F B 
Regular D F D 
Regular A C A 

3 3 2 

a Bending in plane of irregularity. 
b Bending out of plane of irregularity. 
c In spite of singular stiffness matrix. 
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Table 18 
Accuracy affecting parameters vs. test problems 

Parameters which affect accuracy 

Response excited bv loading 
Extension 
In-plane shear and bending 
Out-of-plane shear and bending 
Twist 
Higher order stress gradients 

Element shape 
Aspect ratio 
Skew 
Taper 
Warp 
Displaced edge nodes 

Problem geometry 
Single curvature 
Double curvature 
Free boundary 
Simply-supported boundary 
Clamped boundary 
Symmetric boundary 
Enforced motion and boundary 
Thinness 
Slenderness 

Material 
Nearly incompressible 
Anisotropic 

Test problems where illustrated 

I. 3,8.9. 10. 13. 14. 15 
1.4.5.9.  11.13. 14. 15 
2. 6. 7. 10. 11.12. 13, 14 
2. 8. 10. 12. 13. 14 
12. 13. 14. 15 

All 
1 .2 .3 ,5 .7 .8  
i . 2 , 3 ,5 .7 .  8.9. 10. 13, 14. 15 
11 
9. 10. 13. 14. 15 

13 
11.14 
3 .4 ,5 ,6 .7 ,8 .9 ,  10. 11, 13. 14. 15 
12. 13 
3. 4. 5, 6. 7. 8. 9. 10. 11, 12 
12. 13, 14. 15 
1.2 
All except 15 
3 .4 .5 .6 .7 .8 .9 ,  10. 11 

15 
None 

summarized in Table 18, where it is seen that all of the parameters affecting accuracy except 
anisotropic material are present in one or more of the proposed test problems and more often in 
several of them. 

Concluding remarks 

The present paper has described a proposed standard set of finite element test problems in 
sufficient detail to allow their reproduction in any general purpose finite element code. The 
problems, while few in number and relatively simple, have been designed to include, collec- 
tively, nearly all of the parameters which have important effects on element accuracy. 

The proposed test problems have been exercised on a representative set of quadrilateral shell 
and brick elements with different orders of complexity, and it has been shown that almost every 
problem is capable of evoking results ranging from excellent to poor. As developers of finite 
elements, this is exactly the sort of test problem library we would want to help us find and 
correct element errors and weaknesses. It is also hoped that the user community will be able to 
profit from them in selecting elements and mesh sizes. 
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